3.368 \(\int \frac{1}{\sqrt{1-a^2 x^2} \cosh ^{-1}(a x)^3} \, dx\)

Optimal. Leaf size=32 \[ -\frac{\sqrt{a x-1}}{2 a \sqrt{1-a x} \cosh ^{-1}(a x)^2} \]

[Out]

-Sqrt[-1 + a*x]/(2*a*Sqrt[1 - a*x]*ArcCosh[a*x]^2)

________________________________________________________________________________________

Rubi [A]  time = 0.148091, antiderivative size = 45, normalized size of antiderivative = 1.41, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {5713, 5676} \[ -\frac{\sqrt{a x-1} \sqrt{a x+1}}{2 a \sqrt{1-a^2 x^2} \cosh ^{-1}(a x)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]^3),x]

[Out]

-(Sqrt[-1 + a*x]*Sqrt[1 + a*x])/(2*a*Sqrt[1 - a^2*x^2]*ArcCosh[a*x]^2)

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-a^2 x^2} \cosh ^{-1}(a x)^3} \, dx &=\frac{\left (\sqrt{-1+a x} \sqrt{1+a x}\right ) \int \frac{1}{\sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)^3} \, dx}{\sqrt{1-a^2 x^2}}\\ &=-\frac{\sqrt{-1+a x} \sqrt{1+a x}}{2 a \sqrt{1-a^2 x^2} \cosh ^{-1}(a x)^2}\\ \end{align*}

Mathematica [A]  time = 0.0251697, size = 45, normalized size = 1.41 \[ -\frac{\sqrt{a x-1} \sqrt{a x+1}}{2 a \sqrt{1-a^2 x^2} \cosh ^{-1}(a x)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]^3),x]

[Out]

-(Sqrt[-1 + a*x]*Sqrt[1 + a*x])/(2*a*Sqrt[1 - a^2*x^2]*ArcCosh[a*x]^2)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 51, normalized size = 1.6 \begin{align*}{\frac{1}{2\,a \left ({a}^{2}{x}^{2}-1 \right ) \left ({\rm arccosh} \left (ax\right ) \right ) ^{2}}\sqrt{- \left ( ax-1 \right ) \left ( ax+1 \right ) }\sqrt{ax-1}\sqrt{ax+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arccosh(a*x)^3/(-a^2*x^2+1)^(1/2),x)

[Out]

1/2*(-(a*x-1)*(a*x+1))^(1/2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a/(a^2*x^2-1)/arccosh(a*x)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccosh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-1/2*(a^7*x^7 - 3*a^5*x^5 + 3*a^3*x^3 + (a^4*x^4 - a^2*x^2)*(a*x + 1)^(3/2)*(a*x - 1)^(3/2) + (3*a^5*x^5 - 5*a
^3*x^3 + 2*a*x)*(a*x + 1)*(a*x - 1) + (3*a^6*x^6 - 7*a^4*x^4 + 5*a^2*x^2 - 1)*sqrt(a*x + 1)*sqrt(a*x - 1) - a*
x - (a^5*x^5 - 2*a^3*x^3 - (a^2*x^2 - 1)*(a*x + 1)^(3/2)*(a*x - 1)^(3/2) - (a^3*x^3 - a*x)*(a*x + 1)*(a*x - 1)
 + (a^4*x^4 - 2*a^2*x^2 + 1)*sqrt(a*x + 1)*sqrt(a*x - 1) + a*x)*log(a*x + sqrt(a*x + 1)*sqrt(a*x - 1)))/(((a*x
 + 1)^2*(a*x - 1)^(3/2)*a^4*x^3 + 3*(a^5*x^4 - a^3*x^2)*(a*x + 1)^(3/2)*(a*x - 1) + 3*(a^6*x^5 - 2*a^4*x^3 + a
^2*x)*(a*x + 1)*sqrt(a*x - 1) + (a^7*x^6 - 3*a^5*x^4 + 3*a^3*x^2 - a)*sqrt(a*x + 1))*sqrt(-a*x + 1)*log(a*x +
sqrt(a*x + 1)*sqrt(a*x - 1))^2) - integrate(-1/2*(2*a^6*x^6 - 3*a^4*x^4 - (2*a^2*x^2 - 3)*(a*x + 1)^2*(a*x - 1
)^2 - 4*(a^3*x^3 - a*x)*(a*x + 1)^(3/2)*(a*x - 1)^(3/2) - 4*(a^2*x^2 - 1)*(a*x + 1)*(a*x - 1) + 4*(a^5*x^5 - 2
*a^3*x^3 + a*x)*sqrt(a*x + 1)*sqrt(a*x - 1) + 1)/(((a*x + 1)^(5/2)*(a*x - 1)^2*a^4*x^4 + 4*(a^5*x^5 - a^3*x^3)
*(a*x + 1)^2*(a*x - 1)^(3/2) + 6*(a^6*x^6 - 2*a^4*x^4 + a^2*x^2)*(a*x + 1)^(3/2)*(a*x - 1) + 4*(a^7*x^7 - 3*a^
5*x^5 + 3*a^3*x^3 - a*x)*(a*x + 1)*sqrt(a*x - 1) + (a^8*x^8 - 4*a^6*x^6 + 6*a^4*x^4 - 4*a^2*x^2 + 1)*sqrt(a*x
+ 1))*sqrt(-a*x + 1)*log(a*x + sqrt(a*x + 1)*sqrt(a*x - 1))), x)

________________________________________________________________________________________

Fricas [B]  time = 1.9688, size = 120, normalized size = 3.75 \begin{align*} \frac{\sqrt{a^{2} x^{2} - 1} \sqrt{-a^{2} x^{2} + 1}}{2 \,{\left (a^{3} x^{2} - a\right )} \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccosh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(a^2*x^2 - 1)*sqrt(-a^2*x^2 + 1)/((a^3*x^2 - a)*log(a*x + sqrt(a^2*x^2 - 1))^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \operatorname{acosh}^{3}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/acosh(a*x)**3/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(1/(sqrt(-(a*x - 1)*(a*x + 1))*acosh(a*x)**3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-a^{2} x^{2} + 1} \operatorname{arcosh}\left (a x\right )^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccosh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-a^2*x^2 + 1)*arccosh(a*x)^3), x)